Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1304691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344207

RESUMO

Background: Tumor heterogeneity is one of the key factors leading to chemo-resistance relapse. It remains unknown how resistant cancer cells influence sensitive cells during cohabitation and growth within a heterogenous tumors. The goal of our study was to identify driving factors that mediate the interactions between resistant and sensitive cancer cells and to determine the effects of cohabitation on both phenotypes. Methods: We used isogenic ovarian cancer (OC) cell lines pairs, sensitive and resistant to platinum: OVCAR5 vs. OVCAR5 CisR and PE01 vs. PE04, respectively, to perform long term direct culture and to study the phenotypical changes of the interaction of these cells. Results: Long term direct co-culture of sensitive and resistant OC cells promoted proliferation (p < 0.001) of sensitive cells and increased the proportion of cells in the G1 and S cell cycle phase in both PE01 and OVCAR5 cells. Direct co-culture led to a decrease in the IC50 to platinum in the cisplatin-sensitive cells (5.92 µM to 2.79 µM for PE01, and from 2.05 µM to 1.51 µM for OVCAR5). RNAseq analysis of co-cultured cells showed enrichment of Cell Cycle Control, Cyclins and Cell Cycle Regulation pathways. The transcription factor E2F1 was predicted as the main effector responsible for the transcriptomic changes in sensitive cells. Western blot and qRT-PCR confirmed upregulation of E2F1 in co-cultured vs monoculture. Furthermore, an E2F1 inhibitor reverted the increase in proliferation rate induced by co-culture to baseline levels. Conclusion: Our data suggest that long term cohabitation of chemo-sensitive and -resistant cancer cells drive sensitive cells to a higher proliferative state, more responsive to platinum. Our results reveal an unexpected effect caused by direct interactions between cancer cells with different proliferative rates and levels of platinum resistance, modelling competition between cells in heterogeneous tumors.

2.
Adv Sci (Weinh) ; 11(13): e2305212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263873

RESUMO

Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Receptores Depuradores Classe B/metabolismo , Colesterol/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução
3.
Clin Cancer Res ; 30(6): 1175-1188, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38231483

RESUMO

PURPOSE: DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development. EXPERIMENTAL DESIGN: The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy. RESULTS: Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts. CONCLUSIONS: NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores Enzimáticos/uso terapêutico , Aldeído Desidrogenase/genética , DNA , Lipídeos/uso terapêutico
4.
Mol Cancer Ther ; 22(3): 393-405, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36622754

RESUMO

Development of resistance to platinum (Pt) in ovarian cancer remains a major clinical challenge. Here we focused on identifying epitranscriptomic modifications linked to Pt resistance. Fat mass and obesity-associated protein (FTO) is a N6-methyladenosine (m6A) RNA demethylase that we recently described as a tumor suppressor in ovarian cancer. We hypothesized that FTO-induced removal of m6A marks regulates the cellular response of ovarian cancer cells to Pt and is linked to the development of resistance. To study the involvement of FTO in the cellular response to Pt, we used ovarian cancer cells in which FTO was knocked down via short hairpin RNA or overexpressed and Pt-resistant (Pt-R) models derived through repeated cycles of exposure to Pt. We found that FTO was significantly downregulated in Pt-R versus sensitive ovarian cancer cells. Forced expression of FTO, but not of mutant FTO, increased sensitivity to Pt in vitro and in vivo (P < 0.05). Increased numbers of γ-H2AX foci, measuring DNA double-strand breaks, and increased apoptosis were observed after exposure to Pt in FTO-overexpressing versus control cells. Through integrated RNA sequencing and MeRIP sequencing, we identified and validated the enzyme nicotinamide N-methyltransferase (NNMT), as a new FTO target linked to Pt response. NNMT was upregulated and demethylated in FTO-overexpressing cells. Treatment with an NNMT inhibitor or NNMT knockdown restored sensitivity to Pt in FTO-overexpressing cells. Our results support a new function for FTO-dependent m6A RNA modifications in regulating the response to Pt through NNMT, a newly identified RNA methylated gene target.


Assuntos
Neoplasias Ovarianas , Platina , RNA , Feminino , Humanos , Adenosina/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Nicotinamida N-Metiltransferase , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Platina/farmacologia , Platina/uso terapêutico , RNA/química , RNA/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(41): e2203480119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36197994

RESUMO

Fatty acids are an important source of energy and a key component of phospholipids in membranes and organelles. Saturated fatty acids (SFAs) are converted into unsaturated fatty acids (UFAs) by stearoyl Co-A desaturase (SCD), an enzyme active in cancer. Here, we studied how the dynamics between SFAs and UFAs regulated by SCD impacts ovarian cancer cell survival and tumor progression. SCD depletion or inhibition caused lower levels of UFAs vs. SFAs and altered fatty acyl chain plasticity, as demonstrated by lipidomics and stimulated Raman scattering (SRS) microscopy. Further, increased levels of SFAs resulting from SCD knockdown triggered endoplasmic reticulum (ER) stress response with brisk activation of IRE1α/XBP1 and PERK/eIF2α/ATF4 axes. Disorganized ER membrane was visualized by electron microscopy and SRS imaging in ovarian cancer cells in which SCD was knocked down. The induction of long-term mild ER stress or short-time severe ER stress by the increased levels of SFAs and loss of UFAs led to cell death. However, ER stress and apoptosis could be readily rescued by supplementation with UFAs and reequilibration of SFA/UFA levels. The effects of SCD knockdown or inhibition observed in vitro translated into suppression of intraperitoneal tumor growth in ovarian cancer xenograft models. Furthermore, a combined intervention using an SCD inhibitor and an SFA-enriched diet initiated ER stress in tumors growing in vivo and potently blocked their dissemination. In all, our data support SCD as a key regulator of the cancer cell fate under metabolic stress and point to treatment strategies targeting the lipid balance.


Assuntos
Sobrevivência Celular , Endorribonucleases , Ácidos Graxos Insaturados , Neoplasias Ovarianas , Progressão da Doença , Ácidos Graxos Dessaturases , Ácidos Graxos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Feminino , Humanos , Fosfolipídeos , Proteínas Serina-Treonina Quinases , Estearoil-CoA Dessaturase/metabolismo
6.
Nat Commun ; 13(1): 4554, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931676

RESUMO

Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis, indicating reprogramming from glucose to FA dependent anabolic and energy metabolism. A metabolic index incorporating glucose derived anabolism and FA uptake correlates linearly to the level of cisplatin resistance in ovarian cancer (OC) cell lines and primary cells. The increased FA uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing beta-oxidation. Consequently, blocking beta-oxidation by a small molecule inhibitor combined with cisplatin or carboplatin synergistically suppresses OC proliferation in vitro and growth of patient-derived xenografts in vivo. Collectively, these findings support a rapid detection method of cisplatin-resistance at single cell level and a strategy for treating cisplatin-resistant tumors.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos/farmacologia , Feminino , Glucose/metabolismo , Glicólise , Humanos , Neoplasias Ovarianas/patologia , Platina/farmacologia
7.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671108

RESUMO

BackgroundImmune checkpoint inhibitors (ICIs) have modest activity in ovarian cancer (OC). To augment their activity, we used priming with the hypomethylating agent guadecitabine in a phase II study.MethodsEligible patients had platinum-resistant OC, normal organ function, measurable disease, and received up to 5 prior regimens. The treatment included guadecitabine (30 mg/m2) on days 1-4, and pembrolizumab (200 mg i.v.) on day 5, every 21 days. The primary endpoint was the response rate. Tumor biopsies, plasma, and PBMCs were obtained at baseline and after treatment.ResultsAmong 35 evaluable patients, 3 patients had partial responses (8.6%), and 8 (22.9%) patients had stable disease, resulting in a clinical benefit rate of 31.4% (95% CI: 16.9%-49.3%). The median duration of clinical benefit was 6.8 months. Long-interspersed element 1 (LINE1) was hypomethylated in post-treatment PBMCs, and methylomic and transcriptomic analyses showed activation of antitumor immunity in post-treatment biopsies. High-dimensional immune profiling of PBMCs showed a higher frequency of naive and/or central memory CD4+ T cells and of classical monocytes in patients with a durable clinical benefit or response (CBR). A higher baseline density of CD8+ T cells and CD20+ B cells and the presence of tertiary lymphoid structures in tumors were associated with a durable CBR.ConclusionEpigenetic priming using a hypomethylating agent with an ICI was feasible and resulted in a durable clinical benefit associated with immune responses in selected patients with recurrent OC.Trial registrationClinicalTrials.gov NCT02901899.FundingUS Army Medical Research and Material Command/Congressionally Directed Medical Research Programs (USAMRMC/CDMRP) grant W81XWH-17-0141; the Diana Princess of Wales Endowed Professorship and LCCTRAC funds from the Robert H. Lurie Comprehensive Cancer Center; Walter S. and Lucienne Driskill Immunotherapy Research funds; Astex Pharmaceuticals; Merck & Co.; National Cancer Institute (NCI), NIH grants CCSG P30 CA060553, CCSG P30 CA060553, and CA060553.


Assuntos
Recidiva Local de Neoplasia , Neoplasias Ovarianas , Protocolos de Quimioterapia Combinada Antineoplásica , Epigênese Genética , Epigenômica , Feminino , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
8.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34593619

RESUMO

BACKGROUND: Tissue transglutaminase (TG2), an enzyme overexpressed in cancer cells, promotes metastasis and resistance to chemotherapy. Its distinct effects in cancer versus the host compartments have not been elucidated. METHODS: Here, by using a TG2-/- syngeneic ovarian cancer mouse model, we assessed the effects of TG2 deficiency in the host tissues on antitumor immunity and tumor progression. Multicolor flow cytometry was used to phenotype immune cell populations in the peritoneal environment. Cancer cells recovered from malignant ascites were characterized by RNA sequencing, proliferation, and apoptosis assays. RESULTS: We observed that host TG2 loss delayed tumor growth and ascites accumulation and caused increased infiltration of CD8+ T cells and decreased numbers of myeloid cells in the peritoneal fluid. Tumor antigen-specific CD8+ T cell cytotoxic responses were enhanced in ascites from TG2-/- versus TG2+/+ mice and CD8+ T cell depletion caused accelerated ascites accumulation in TG2-/- mice. CD8+ T cells from tumor-bearing TG2-/- mice displayed an effector T cell phenotype, differentiated toward effector memory (Tem). Mechanistically, absence of TG2 augmented signals promoting T cell activation, such as increased cytokine-induced STAT1 and attenuated STAT3 phosphorylation in T cells. Additionally, immune-suppressive myeloid cell populations were reduced in the peritoneal milieu of TG2-/- tumor-bearing mice. In response to the more robust immune response caused by loss of TG2, cancer cells growing intraperitoneally exhibited an interferon-γ(IFN-γ) responsive gene signature and underwent apoptosis. In human specimens, stromal, not tumor, TG2 expression correlated indirectly with numbers of tumor-infiltrating lymphocytes. CONCLUSIONS: Collectively, our data demonstrate decreased tumor burden, increased activation and effector function of T cells, and loss of immunosuppressive signals in the tumor microenvironment of TG2-/- mice. We propose that TG2 acts as an attenuator of antitumor T cell immunity and is a new immunomodulatory target.


Assuntos
Neoplasias Ovarianas/genética , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Fosforilação
9.
Epigenetics ; 16(11): 1201-1216, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33289590

RESUMO

High-grade serous ovarian cancer (HGSOC) harbours aberrant epigenetic features, including DNA methylation. In this study we delineate pathways and networks altered by DNA methylation and associated with HGSOC initiation and progression to a platinum-resistant state. By including tumours from patients who had been treated with the hypomethylating agent (HMA) guadecitabine, we also addressed the role of HMAs in treatment of HGSOC. Tumours from patients with primary (platinum-naïve) HGSOC (n = 20) were compared to patients with recurrent platinum-resistant HGSOC and enrolled in a recently completed clinical trial (NCT01696032). Human ovarian surface epithelial cells (HOSE; n = 5 samples) served as normal controls. Genome-wide methylation profiles were determined. DNA methyltransferase (DNMT) expression levels were examined by immunohistochemistry and correlated with clinical outcomes. Cancer-related and tumorigenesis networks were enriched among differentially methylated genes (DMGs) in primary OC vs. HOSE. When comparing platinum-resistant and primary tumours, 452 CpG island (CGI)-containing gene promoters acquired DNA methylation; of those loci, decreased (P < 0.01) methylation after HMA treatment was observed in 42% (n = 189 CGI). Stem cell pluripotency and cytokine networks were enriched in recurrent platinum-resistant OC tumours, while drug metabolism and transport-related networks were downregulated in tumours from HMA-treated patients compared to HOSE. Lower DNMT1 and 3B protein levels in pre-treatment tumours were associated with improved progression-free survival. The findings provide important insight into the DNA methylation landscape of HGSOC tumorigenesis, platinum resistance and epigenetic resensitization. Epigenetic reprogramming plays an important role in HGSOC aetiology and contributes to clinical outcomes.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Ilhas de CpG , Cistadenocarcinoma Seroso/genética , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/genética
10.
Cancer Res ; 81(2): 384-399, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33172933

RESUMO

Defining traits of platinum-tolerant cancer cells could expose new treatment vulnerabilities. Here, new markers associated with platinum-tolerant cells and tumors were identified using in vitro and in vivo ovarian cancer models treated repetitively with carboplatin and validated in human specimens. Platinum-tolerant cells and tumors were enriched in ALDH+ cells, formed more spheroids, and expressed increased levels of stemness-related transcription factors compared with parental cells. Additionally, platinum-tolerant cells and tumors exhibited expression of the Wnt receptor Frizzled-7 (FZD7). Knockdown of FZD7 improved sensitivity to platinum, decreased spheroid formation, and delayed tumor initiation. The molecular signature distinguishing FZD7+ from FZD7- cells included epithelial-to-mesenchymal (EMT), stemness, and oxidative phosphorylation-enriched gene sets. Overexpression of FZD7 activated the oncogenic factor Tp63, driving upregulation of glutathione metabolism pathways, including glutathione peroxidase 4 (GPX4), which protected cells from chemotherapy-induced oxidative stress. FZD7+ platinum-tolerant ovarian cancer cells were more sensitive and underwent ferroptosis after treatment with GPX4 inhibitors. FZD7, Tp63, and glutathione metabolism gene sets were strongly correlated in the ovarian cancer Tumor Cancer Genome Atlas (TCGA) database and in residual human ovarian cancer specimens after chemotherapy. These results support the existence of a platinum-tolerant cell population with partial cancer stem cell features, characterized by FZD7 expression and dependent on the FZD7-ß-catenin-Tp63-GPX4 pathway for survival. The findings reveal a novel therapeutic vulnerability of platinum-tolerant cancer cells and provide new insight into a potential "persister cancer cell" phenotype. SIGNIFICANCE: Frizzled-7 marks platinum-tolerant cancer cells harboring stemness features and altered glutathione metabolism that depend on GPX4 for survival and are highly susceptible to ferroptosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Receptores Frizzled/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Receptores Frizzled/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Res ; 80(16): 3200-3214, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32606006

RESUMO

N 6-Methyladenosine (m6A) is the most abundant modification of mammalian mRNAs. RNA methylation fine tunes RNA stability and translation, altering cell fate. The fat mass- and obesity-associated protein (FTO) is an m6A demethylase with oncogenic properties in leukemia. Here, we show that FTO expression is suppressed in ovarian tumors and cancer stem cells (CSC). FTO inhibited the self-renewal of ovarian CSC and suppressed tumorigenesis in vivo, both of which required FTO demethylase activity. Integrative RNA sequencing and m6A mapping analysis revealed significant transcriptomic changes associated with FTO overexpression and m6A loss involving stem cell signaling, RNA transcription, and mRNA splicing pathways. By reducing m6A levels at the 3'UTR and the mRNA stability of two phosphodiesterase genes (PDE1C and PDE4B), FTO augmented second messenger 3', 5'-cyclic adenosine monophosphate (cAMP) signaling and suppressed stemness features of ovarian cancer cells. Our results reveal a previously unappreciated tumor suppressor function of FTO in ovarian CSC mediated through inhibition of cAMP signaling. SIGNIFICANCE: A new tumor suppressor function of the RNA demethylase FTO implicates m6A RNA modifications in the regulation of cyclic AMP signaling involved in stemness and tumor initiation.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Sistemas do Segundo Mensageiro , Proteínas Supressoras de Tumor/metabolismo , Regiões 3' não Traduzidas/genética , Adenosina/genética , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Processamento Alternativo , Animais , Ascite/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Regulação para Baixo , Tubas Uterinas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Análise de Sequência de RNA , Esferoides Celulares , Análise Serial de Tecidos , Transcriptoma , Proteínas Supressoras de Tumor/genética
12.
NPJ Precis Oncol ; 3: 32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840082

RESUMO

Loss-of-function mutations of the breast cancer type 1 susceptibility protein (BRCA1) are associated with breast (BC) and ovarian cancer (OC). To identify gene signatures regulated by epigenetic mechanisms in OC cells carrying BRCA1 mutations, we assessed cellular responses to epigenome modifiers and performed genome-wide RNA- and chromatin immunoprecipitation-sequencing in isogenic OC cells UWB1.289 (carrying a BRCA1 mutation, BRCA1-null) and UWB1.289 transduced with wild-type BRCA1 (BRCA1+). Increased sensitivity to histone deacetylase inhibitors (HDACi) was observed in BRCA1-null vs. BRCA1+ cells. Gene expression profiles of BRCA1-null vs. BRCA1+ cells and treated with HDACi were integrated with chromatin mapping of histone H3 lysine 9 or 27 acetylation. Gene networks activated in BRCA1-null vs. BRCA1 + OC cells related to cellular movement, cellular development, cellular growth and proliferation, and activated upstream regulators included TGFß1, TNF, and IFN-γ. The IFN-γ pathway was altered by HDACi in BRCA1+ vs. BRCA1-null cells, and in BRCA1-mutated/or low vs. BRCA1-normal OC tumors profiled in the TCGA. Key IFN-γ-induced genes upregulated at baseline in BRCA1-null vs. BRCA1+OC and BC cells included CXCL10, CXCL11, and IFI16. Increased localization of STAT1 in the promoters of these genes occurred in BRCA1-null OC cells, resulting in diminished responses to IFN-γ or to STAT1 knockdown. The IFN-γ signature was associated with improved survival among OC patients profiled in the TCGA. In all, our results support that changes affecting IFN-γ responses are associated with inactivating BRCA1 mutations in OC. This signature may contribute to altered responses to anti-tumor immunity in BRCA1-mutated cells or tumors.

13.
Cancers (Basel) ; 11(12)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769430

RESUMO

This review highlights recent advances in the understanding of the relevance of altered lipid metabolic pathways contributing to the poor prognosis of high grade serous ovarian cancer, as they relate to cancer metastasis and cancer stemness. Increased lipid uptake regulated by the receptor CD36 and the transport protein FABP4 has been implicated in ovarian cancer metastasis. The symbiotic relationship between ovarian cancer cells and adipocytes was shown to be important for sustaining widespread peritoneal and omental metastasis. Increased lipogenesis dependent on the fatty acid desaturase SCD1 was detected in ovarian cancer stem cells. Furthermore, response to therapy, specifically to platinum, was linked to increased fatty acid biogenesis, while the survival of drug tolerant cells was shown to depend on lipid peroxidation. These recent findings suggest that lipids are necessary elements supporting oncogenic signaling and the energetic needs of rapidly proliferating cancer cells. New strategies targeting key enzymes involved in lipid uptake or utilization in cancer cells have been shown to exert anti-tumor effects and are being developed as cancer interventions in combination with chemotherapy or immunotherapy.

14.
Cancer Res ; 78(11): 2990-3001, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29510995

RESUMO

Cancer progression and recurrence are linked to a rare population of cancer stem cells (CSC). Here, we hypothesized that interactions with the extracellular matrix drive CSC proliferation and tumor-initiating capacity and investigated the functions of scaffold protein tissue transglutaminase (TG2) in ovarian CSC. Complexes formed by TG2, fibronectin (FN), and integrin ß1 were enriched in ovarian CSC and detectable in tumors. A function-inhibiting antibody against the TG2 FN-binding domain suppressed complex formation, CSC proliferation as spheroids, tumor-initiating capacity, and stemness-associated Wnt/ß-catenin signaling. Disruption of the interaction between TG2 and FN also blocked spheroid formation and the response to Wnt ligands. TG2 and the Wnt receptor Frizzled 7 (Fzd7) form a complex in cancer cells and tumors, leading to Wnt pathway activation. Protein docking and peptide inhibition demonstrate that the interaction between TG2 and Fzd7 overlaps with the FN-binding domain of TG2. These results support a new function of TG2 in ovarian CSC, linked to spheroid proliferation and tumor-initiating capacity and mediated through direct interactions with Fzd7. We propose this complex as a new stem cell target.Significance: These findings reveal a new mechanism by which ovarian CSCs interact with the tumor microenvironment, promoting cell proliferation and tumor initiation. Cancer Res; 78(11); 2990-3001. ©2018 AACR.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Transglutaminases/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
15.
Cancer Res ; 78(3): 631-644, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229600

RESUMO

DNA methylation aberrations have been implicated in acquired resistance to platinum drugs in ovarian cancer. In this study, we elucidated an epigenetic signature associated with platinum drug resensitization that may offer utility in predicting the outcomes of patients who are coadministered a DNA methyltransferase inhibitor. The ovarian cancer specimens we analyzed were derived from a recent clinical trial that compared the responses of patients with recurrent platinum-resistant ovarian cancer who received carboplatin plus the DNA methyltransferase inhibitor guadecitabine or a standard-of-care chemotherapy regimen selected by the treating physician. Tumor biopsies or malignant ascites were collected from patients before treatment (day 1, cycle 1) or after treatment (after 2 cycles) for epigenomic and transcriptomic profiling using the Infinium HumanMethylation450 BeadChip (HM450). We defined 94 gene promoters that were hypomethylated significantly by guadecitabine, with 1,659 genes differentially expressed in pretreatment versus posttreatment tumors. Pathway analysis revealed that the experimental regimen significantly altered immune reactivation and DNA repair pathways. Progression-free survival correlated with baseline expression levels of 1,155 genes involved in 25 networks. In functional investigations in ovarian cancer cells, engineered upregulation of certain signature genes silenced by promoter methylation (DOK2, miR-193a, and others) restored platinum drug sensitivity. Overall, our findings illuminate how inhibiting DNA methylation can sensitize ovarian cancer cells to platinum drugs, in large part by altering gene expression patterns related to DNA repair and immune activation, with implications for improving the personalized care and survival outcomes of ovarian cancer patients.Significance: Epigenomic targeting may improve therapeutic outcomes in platinum-resistant and recurrent ovarian cancer in part by effects on DNA repair and antitumor immune responses. Cancer Res; 78(3); 631-44. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Epigenômica/métodos , Genômica/métodos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Platina/farmacologia , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/patologia , Prognóstico , Regiões Promotoras Genéticas , Células Tumorais Cultivadas
16.
Neoplasia ; 18(11): 689-698, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27792935

RESUMO

Resistance to chemotherapy is a hallmark of pancreatic ductal adenocarcinoma (PDA) and has been partly attributed to the dense desmoplastic stroma, which forms a protective niche for cancer cells. Tissue transglutaminase (TG2), a Ca2+-dependent enzyme, is secreted by PDA cells and cross-links proteins in the tumor microenvironment (TME) through acyl-transfer between glutamine and lysine residues, promoting PDA growth. The objective of the current study was to determine whether secreted TG2 by PDA cells alters the response of pancreatic tumors to gemcitabine. Orthotopic pancreatic xenografts and co-culture of PDA and stromal cells were employed to determine the mechanisms by which TG2 alters tumor-stroma interactions and response to gemcitabine. Analysis of the pancreatic The Cancer Genome Atlas (TCGA) database demonstrated that increased TG2 expression levels correlate with worse overall survival (hazard ratio=1.37). Stable TG2 knockdown in PDA cells led to decreased size of pancreatic xenografts and increased sensitivity to gemcitabine in vivo. However, TG2 downregulation did not increase cytotoxicity of gemcitabine in vitro. Additionally, multivessel density and gemcitabine uptake in pancreatic tumor tissue, as measured by mass spectrometry (MS-HPLC), were not significantly different in tumors expressing TG2 versus tumors in which TG2 was knocked down. Fibroblasts, stimulated by TG2 secreted by PDA cells, secrete laminin A1, which protects cancer cells from gemcitabine-induced cytotoxicity. In all, our results demonstrate that TG2 secreted in the pancreatic TME orchestrates the cross talk between cancer cells and stroma, impacting tumor growth and response to chemotherapy. Our study supports TG2 inhibition to increase the antitumor effects of gemcitabine in PDA.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Ligação ao GTP/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transglutaminases/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática , Proteínas de Ligação ao GTP/genética , Expressão Gênica , Humanos , Laminina/metabolismo , Camundongos , Modelos Biológicos , Neoplasias Pancreáticas/tratamento farmacológico , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
17.
Oncotarget ; 7(51): 84453-84467, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27563817

RESUMO

Cancer cells acquire essential characteristics for metastatic dissemination through the process of epithelial-to-mesenchymal transition (EMT), which is regulated by gene expression and chromatin remodeling changes. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 of histone H3 (H3K27me3) to repress gene transcription. Here we report the functional roles of EZH2-catalyzed H3K27me3 during EMT in ovarian cancer (OC) cells. TGF-ß-induced EMT in SKOV3 OC cells was associated with decreased levels of EZH2 and H3K27me3 (P<0.05). These effects were delayed (~72 h relative to EMT initiation) and coincided with increased (>15-fold) expression of EMT-associated transcription factors ZEB2 and SNAI2. EZH2 knockdown (using siRNA) or enzymatic inhibition (by GSK126) induced EMT-like changes in OC cells. The EMT regulator ZEB2 was upregulated in cells treated with either approach. Furthermore, TGF-ß enhanced expression of ZEB2 in EZH2 siRNA- or GSK126-treated cells (P<0.01), suggesting that H3K27me3 plays a role in TGF-ß-stimulated ZEB2 induction. Chromatin immunoprecipitation assays confirmed that TGF-ß treatment decreased binding of EZH2 and H3K27me3 to the ZEB2 promoter (P<0.05). In all, these results demonstrate that EZH2, by repressing ZEB2, is required for the maintenance of an epithelial phenotype in OC cells.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Histonas/metabolismo , Humanos , Indóis/farmacologia , Metilação/efeitos dos fármacos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Piridonas/farmacologia , Interferência de RNA , Fator de Crescimento Transformador beta/farmacologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
18.
Gynecol Oncol ; 142(3): 539-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27374141

RESUMO

OBJECTIVES: Epigenetic alterations have been implicated in the development of platinum resistance in ovarian cancer (OC). In this study, we aimed to identify DNA methylation changes in platinum resistant tumors and their functional implications. METHODS: To identify DNA methylation alterations we used the Illumina 450k DNA methylation array and profiled platinum sensitive and resistant OC xenografts. Validation analyses employed RT-PCR and immunohistochemistry (IHC). RESULTS: Genome-wide DNA methylation analysis of OC xenografts identified 6 genes (SSH3, SLC12A4, TMEM88, PCDHGC3, DAXX, MEST) whose promoters were significantly hypomethylated in resistant compared to sensitive (control) xenografts (p<0.001). We confirmed that TMEM88 and DAXX mRNA expression levels were increased in platinum resistant compared to control xenografts, inversely correlated with promoter methylation levels. Furthermore treatment of OC cells with SGI-110 (guadecitabine), a DNA methyl transferase (DNMT) inhibitor, increased TMEM88 mRNA expression levels, supporting that TMEM88 is transcriptionally regulated by promoter methylation. TMEM88 was detectable by IHC in all histological types of ovarian tumors and its knock-down by using siRNA promoted OC cell proliferation and colony formation and re-sensitized cells to platinum. Furthermore, TMEM88 knock down induced upregulation of cyclin D1 and c-Myc, known Wnt target genes, supporting that TMEM88 inhibits Wnt signaling. CONCLUSIONS: Overall, our results support that OC platinum resistance was correlated with TMEM88 overexpression regulated through decreased promoter methylation. Our data suggest that TMEM88 functions as an inhibitor of Wnt signaling, contributing to the development of platinum resistance.


Assuntos
Metilação de DNA , Proteínas de Membrana/genética , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/genética , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 17(3): 323, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26938530

RESUMO

The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors' accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo.


Assuntos
Anti-Inflamatórios/farmacologia , Apigenina/farmacologia , Infiltração Leucêmica/tratamento farmacológico , NF-kappa B/metabolismo , Sepse/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Apigenina/administração & dosagem , Apigenina/uso terapêutico , Apoptose , Suplementos Nutricionais , Infiltração Leucêmica/imunologia , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Sepse/imunologia , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia
20.
Gynecol Oncol ; 138(2): 372-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26050922

RESUMO

OBJECTIVE: Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. METHODS: To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119 and UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. RESULTS: Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. CONCLUSIONS: Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community.


Assuntos
Cistadenocarcinoma Seroso/patologia , Modelos Animais de Doenças , Neoplasias Ovarianas/patologia , Animais , Processos de Crescimento Celular , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Gradação de Tumores , Neoplasias Ovarianas/metabolismo , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Proteínas WT1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...